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Firstly, in this paper, based on the theory of the porous elastic medium and combined with
the effective stress principle of unsaturated soil, a set of governing equations is established
to describe consolidation of the unsaturated soil. Secondly, an analytical expression under
any dynamic loads is obtained with the help of Laplace integral transformation. Finally,
analysis of numerical examples under specific boundary conditions is made to discuss one-
-dimensional consolidation characteristics under harmonic loads and the influence of factors
on the consolidation characteristics of unsaturated soil, such as excitation frequency and
initial saturation.
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1. Introduction

Under an external load, the pore fluid is slowly discharged out of soil, and the process of gradual
compression of soil is called soil consolidation. Consolidation characteristics of soil under complex
conditions are of great significance to the actual construction process and operation stage of a
project. For example, due to the effect of vehicle vibration load, long-term consolidation and
deformation of the roadbed has a decisive impact on safety, durability, later operation and
maintenance of the project in highway or railway engineering. Therefore, the ability to describe
accurately the consolidation and deformation characteristics of soil is of great significance to
present engineering.
At present, scholars have done a series of research on the problem of static and dynamic

consolidation of the saturated soil foundation from different aspects (Pan et al., 2006; Xie et al.,
2008, 2014; Toufigh and Ouria, 2009; Wang et al., 2017a,b; Shi et al., 2018). Compared with
saturated soil, unsaturated soil not only contains the solid phase and liquid phase, but also
contains a certain amount of the gas phase. It is widely present in arid, semi-arid areas and
soil above the groundwater level. The research on consolidation of unsaturated soil began in the
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1960s, when Fredlund and Rahardjo (1993) considered the continuity of pore water and pore
gas, and established a relatively complete consolidation equation of unsaturated soil based on
three-phase coupling characteristics. When discussing the problem of one-dimensional consoli-
dation, the pore water dissipation equation is similar to the Terzaghi consolidation theory, but
in the derivation process many assumptions that are inconsistent with the actual situation are
introduced, such as constant total stress and so on. Since then, the analysis of the consolida-
tion of unsaturated soil had achieved a series of results whether in terms of theoretical analysis
(Sheng et al., 2019; Qin et al., 2010; Su and Xie, 2010; Ho et al., 2014; Lo et al., 2016; Wang
et al., 2017, 2018) or numerical simulation (Chen et al., 1999; Yin and Ling, 2007; Huang et
al., 2009; Pedroso and Farias, 2011). However, in the research on the consolidation theory of
unsaturated soil, most of the load forms imposed on the soil are dead loads or cyclic loads. In
contrast, analytical solutions under the action of other dynamic loads are rarely reported in
the literature. Based on the elastic theory of unsaturated porous media, this paper considers
a function of three-phase coupling in unsaturated soil and establishes the consolidation equa-
tion under any dynamic loads. The Laplace integral transformation is used to finally obtain an
explicit analytical solution for the problem of one-dimensional consolidation. Numerical exam-
ples under specific boundary conditions are used to discuss the law of influence of consolidation
characteristics of the soil, frequency and saturation under harmonic loads.

2. Governing equation

Without considering the body force, the momentum balance equation of unsaturated porous
media can be expressed as (Lo et al., 2002)

R11
(∂ua
∂t
−
∂us
∂t

)

= θa∇Pa R22
(∂uw
∂t
−
∂us
∂t

)

= θw∇Pw ∇ · σ = ρüs (2.1)

where ua, uw and us represent the displacement vectors of gas, water and solid soil skeletons,
respectively; θa and θw represent the volume fractions of gas and water, respectively, and there
are θa = Saϕ, θw = Swϕ, where Sa and Sw are the saturation of gas and water, respectively, ϕ is
porosity of the soil; Pa and Pw are pore gas pressure and pore water pressure, respectively; R11 =
−[θ2aη1/ks]kra is the viscous coupling coefficient of the solid phase and gas; R22 = −[θ

2
wη2/ks]krw

is the viscous coupling coefficient of the solid phase and water, where η1 and η2 are viscosity
coefficients of gas and water, respectively; ks is the inherent permeability of porous media,
kra and krw describe the relative permeability of gas and water, respectively; σ is the total
stress tensor.
Unsaturated soil theory based on the suction stress between solid particles and the effective

stress can be expressed as

σ = σ′ − (Pa + σ
s)δ (2.2)

where σ′ is the effective stress tensor; σs – suction stress between solid particles, which is a
function related to the matrix suction and other factors, δ – unit tensor. Regarding the expression
of inter-particle attraction, domestic and foreign scholars have given different forms (Lu et al.,
2010; Chen et al., 1993; Jiang et al., 2004). According to current needs, this paper adopts the
suction stress function with an explicit expression (Lu et al., 2010), namely

σs =

{

Pa − Pw for Pa − Pw ¬ 0

−Se(Pa − Pw) for Pa − Pw  0
(2.3)

where Se = (Sw − Sr)/(Ss − Sr) is the effective saturation, Ss – complete saturation, and
Sr – residual saturation.
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Combining the deformation of the solid framework and the pore fluid, the stress-strain rela-
tionship can be obtained (Lo et al., 2014)

σ = 2Ge+
[(

a11 −
2

3
G
)

e+ a12εa + a13εw
]

δ (2.4)

and

−θaPa = a12e+ a22εa + a23εw − θwPw = a13e+ a23εa + a33εw (2.5)

where e = (∇us + ∇u
T
s )/2 is the strain tensor of the framework; e = ∇us is the volumetric

strain of the solid-phase framework; εa = ∇ua and εw = ∇uw are volumetric strains of gas
and water, respectively; G is the shear modulus of the porous medium; σ is the unit tensor; aij
(i, j = 1, 2, 3) are coefficients of elasticity.
Combining Eqs. (2.2), (2.3) and (2.4), we can get

σ = 2Ge+
[(

a11−
2

3
G+A1a12+A2a13

)

e+(a12+A1a22+A2a23)εa+(a13+A1a23+A2a33)εw
]

δ

(2.6)

where A1 = (1− Se)/θa and A2 = Se/θw.
Through simultaneous Eqs. (2.5), the solution can be

εa = d1e+ d2Pa + d3Pw εw = d4e+ d5Pa + d6Pw (2.7)

where

d1 =
a12a23 − a13a23
a223 − a22a33

d2 =
θaa33

a223 − a22a33
d3 =

−θwa23
a223 − a22a33

d4 =
a12a22 − a12a23
a223 − a22a33

d5 =
−θaa23
a223 − a22a33

d6 =
θwa22

a223 − a22a33

Take divergence on both the left and right-hand sides of Eqs. (2.1), and substitute Eqs. (2.7)
into it, then the coupled diffusion equation can be obtained

d2
∂Pa
∂t
+ d3
∂Pw
∂t
+ (d1 − 1)

∂e

∂t
=
θa
R11
∇2Pa

d5
∂Pa
∂t
+ d6
∂Pw
∂t
+ (d4 − 1)

∂e

∂t
=
θw
R22
∇2Pw

(2.8)

Substitute Eqs. (2.7) into Eq. (2.6) to eliminate εa and εw, the total stress expression can
be obtained as

σ = 2Ge+ (H1e+H2Pa +H3Pw)δ (2.9)

the coefficients in Eq. (2.9) are

H1 = a11 −
2

3
G+A1a12 +A2a13 + (a12 +A1a22 +A2a23)d1 + (a13 +A1a23 +A2a33)d4

H2 = (a12 +A1a22 +A2a23)d2 + (a13 +A1a23 +A2a33)d5

H3 = (a12 +A1a22 +A2a23)d3 + (a13 +A1a23 +A2a33)d6

Finally, by combining Eqs. (2.1)3 and (2.9), a balance equation expressed by skeleton dis-
placement, pore pressure and pore water pressure can be obtained

G∇2us + (H1 +G)∇e +H2∇Pa +H3∇Pw = ρüs (2.10)

Based on the above derivation process, it is found that Eqs. (2.8) and (2.10) are three
phase-coupling partial differential equations, which can be used to describe the consolidation of
unsaturated soil.
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3. Analytical solution of the one-dimensional dynamic consolidation problem

Consider the unsaturated soil layer as shown in Fig. 1, where thickness of the soil layer is h, and
there is a dynamic load f(t) acting on the surface, exx = eyy = 0, e = ezz = ∂w/∂z.

Fig. 1. Calculation model of unsaturated soil under the dynamic load f(t)

So control Eqs. (2.8) and (2.10) can be written as

q1
∂Pa
∂t
+ q2
∂Pw
∂t
= b1
∂2Pa
∂z2
+ γ1
∂f(t)

∂t

q3
∂Pa
∂t
+ q4
∂Pw
∂t
= b2
∂2Pw
∂z2
+ γ2
∂f(t)

∂t

(3.1)

and

∂w

∂z
= −

f(t)

2G+H1
−

H2
2G+H1

Pa −
H3

2G+H1
Pw (3.2)

where b2/q4 represents the diffusion coefficient of pore water pressure, called the consolidation
coefficient, and is often expressed by the symbol cv. The coefficients q1, q2, q3, q4, b1, b2, γ1, γ2
are respectively

q1 = d2 −
H2(d1 − 1)

2G+H1
q2 = d3 −

H3(d1 − 1)

2G+H1
q3 = d5 −

H2(d4 − 1)

2G+H1

q4 = d6 −
H3(d4 − 1)

2G+H1
b1 =

θa
R11

b2 =
θw
R22

γ1 =
d1 − 1

2G+H1
γ2 =

d4 − 1

2G+H1

Since the exhaust and drainage cannot be completed at the moment of applying the dynamic
load f(t), it is considered that the content of water and gas remains the same. From Eqs. (3.1),
we get

0+
∫

0

b1
∂2Pa
∂z2
dt =

0+
∫

0

b2
∂2Pw
∂z2

dt = 0 (3.3)

The formula: integral limit 0 and 0+, respectively, represents the time before and after the
load is applied.
From Eq. (3.2), we get

∂w(z, 0+)

∂z
= −

f(t)0+

2G+H1
−

H2
2G+H1

Pa −
H3

2G+H1
Pw (3.4)
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Combining Eqs. (3.3) and (2.8), we find

(d1 − 1)
∂w(z, 0+)

∂z
+ d2Pa(z, 0

+) + d3Pw(z, 0
+) = 0

(d4 − 1)
∂w(z, 0+)

∂z
+ d5Pa(z, 0

+) + d6Pw(z, 0
+) = 0

(3.5)

Substituting Eq. (3.4) into Eqs. (3.5), respectively, the initial conditions of the problem can
be obtained as

Pa(z, 0
+) = r1f(t)0+ Pw(z, 0

+) = r2f(t)0+ (3.6)

where

r1 =
(1− d4)q2 − (1− d1)q4
(2G+H1)(q1q4 − q2q3)

r2 =
(1− d1)q3 − (1− d4)q1
(2G +H1)(q1q4 − q2q3)

Assume that the soil layer can both drain and exhaust on both sides at z = 0 and z = h,
and the boundary conditions are

Pa(0, t) = Pw(0, t) = 0 Pa(h, t) = Pw(h, t) = 0 (3.7)

Without loss of generality, it is assumed that the pore gas pressure Pa(z, t), pore water
pressure Pw(z, t) and the Fourier series form ∂f(t)/∂t are

Pa(z, t) =
∞
∑

n=0

Pan(t) sin(λnz) Pw(z, t) =
∞
∑

n=0

Pwn(t) sin(λnz) (3.8)

and

∂f(t)

∂t
=
∞
∑

m=0

Bm(t) sin(λmz) (3.9)

where λm = mπ/h, Pan, Pwn and Bm are functions related to time t.

Combining Eqs. (3.8) and (3.1), we get

∞
∑

n=0

[q1P
′

an(t) + q2P
′

wn(t) + b1λ
2
nPan(t)] sin(λnz) = γ1

∞
∑

m=0

Bam(t) sin(λmz)

∞
∑

n=0

[q3P
′

an(t) + q3P
′

wn(t) + b2λ
2
nPwn(t)] sin(λnz) = γ2

∞
∑

m=0

Bwm(t) sin(λmz)

(3.10)

Using the orthogonality of trigonometric functions and Eq. (3.1), we can see that the number
of terms in m and n are equal, so that we obtain

q1P
′

an(t) + q2P
′

wn(t) + b1λ
2
nPan(t) = γ1Ban(t)

q3P
′

an(t) + q4P
′

wn(t) + b2λ
2
nPwn(t) = γ2Bwn(t)

(3.11)

Considering the initial conditions in Eqs. (3.6), integrating Eqs. (3.8) one arrives at

Pan(0) =
2

hλn
r1f(t)0+ [1− cos(nπ)]

Pwn(0) =
2

hλn
r2f(t)0+ [1− cos(nπ)]

(3.12)
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Using Laplace integral transformation, Eqs. (3.11) can be written as follows

[

Pan(s)
Pwn(s)

]

=
1

X

([

sq4 + b2λ
2
n −sq2

−sq3 sq1 + b1λ
2
n

] [

q1 q2
q3 q4

] [

Pan(0)
Pwn(0)

]

+

[

sq4 + b2λ
2
n −sq2

−sq3 sq1 + b1λ
2
n

] [

γ1Ban(s)
γ2Bwn(s)

])

(3.13)

where X = ∆s2 + λ2n(b1q4 + b2q1)s+ b1b2λ
4
n and ∆ = q1q4 − q2q3.

Solving Eq. (3.13), we get

Pan(s) =
s

s2 + β2n
Pan(0) +

b2λ
2
nq1
βn∆

βn
s2 + β2n

Pan(0) +
b2q2λ

2
n

∆βn

βn
s2 + β2n

Pwn(0)

+
q4γ1
∆

s

s2 + β2n
Ban(s) +

b2λ
2
nγ1
βn∆

βn
s2 + β2n

Ban(s)−
q2γ2
∆

s

s2 + β2n
Bwn(s)

Pwn(s) =
b1q3λ

2
n

∆βn

βn
s2 + β2n

Pan(0) +
s

s2 + β2n
Pwn(0) +

b1λ
2
nq4
βn∆

βn
s2 + β2n

Pwn(0)

−
γ1q3
∆

s

s2 + β2n
Ban(s) +

q1γ2
∆

s

s2 + β2n
Bwn(s) +

γ2b1λ
2
n

∆βn

βn
s2 + β2n

Bwn(s)

(3.14)

where β2n = (1/∆)λ
2
n(b1q4 + b2q1)s+ (1/∆)b1b2λ

4
n.

Using Laplace inverse transformation, Eqs. (3.14) can be expressed in the time domain

Pan(t) = Pan(0) cos(βnt) +
b2q1λ

2
n

βn∆
Pan(0) sin(βnt) +

b2q2λ
2
n

∆βn
Pwn(0) sin(βnt)

+
q4γ1
∆
cos(βnt)Ban(t) +

b2γ1λ
2
n

βn∆
sin(βnt)Ban(t)−

q2γ2
∆
cos(βnt)Bwn(t)

Pwn(t) =
b1q3λ

2
n

∆βn
Pan(0) sin(βnt) + Pwn(0) cos(βnt) +

b1q4λ
2
n

βn∆
Pwn(0) sin(βnt)

−
q3γ1
∆
cos(βnt)Ban(t) +

q1γ2
∆
cos(βnt)Bwn(t) +

b1λ
2
nγ2
βn∆

sin(βnt)Bwn(t)

(3.15)

Combining Eqs. (3.2), (3.8) and (3.15), the settlement expression of the unsaturated soil
layer under any dynamic load can be finally obtained

S(t) = −

h
∫

0

∂w

∂z
dz =

H2
2G+H1

∞
∑

n=0

1− cos(nπ)

λn
Pan(t) +

f(t)h

2G+H1

+
H3

2G+H1

∞
∑

n=0

1− cos(nπ)

λn
Pwn(t)

(3.16)

4. Numerical example analysis

As a numerical example, consider the following simple harmonic load on the surface of the soil
layer

f(t) =
P ∗

2
[1 + cos(ωt)] (4.1)

where P ∗/2 and ω, respectively, represent the amplitude and frequency of the harmonic load.
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Then the analytical expression of settlement deformation is

S(t) = −

h
∫

0

∂w

∂z
dz =

H2
2G+H1

∞
∑

n=0

1− cos(nπ)

λn
Pan(t) +

P ∗h[1 + cos(ωt)]

2(2G +H1)

+
H3

2G+H1

∞
∑

n=0

1− cos(nπ)

λn
Pwn(t)

(4.2)

The specific expressions of each variable in Eq. (4.2) are shown in Appendix A.
The one-dimensional consolidation equation of unsaturated soil considering the pore liquid

phase and pore gas phase and their mutual coupling effects is derived and solved by the Laplace
transform. Numerical analysis is carried out on the present calculation example under the action
of a simple harmonic load. The law of influence of the excitation frequency, initial saturation
and depth on the one-dimensional consolidation deformation and characteristics of unsaturated
soil is discussed. Among them, physical characteristic parameters of unsaturated soil used in the
numerical examples, such as elastic coefficient, matrix suction and permeability coefficient of
the fluid phase are all related to saturated soil. Therefore, the expressions of specific parameters
are detailed in Appendix B. When considering a one-dimensional unsaturated clay layer, the
calculated parameter values are shown in Table 1.

Table 1. Basic physical parameters of clay

Parameter type Symbol Numerical value

Porosity ϕ 0.475

Fitting parameter ζ 1.168m−1

Fitting parameter n 1.165

Inherent permeability ks 1.699 · 10−14m2

Shear modulus G 2.4 · 106 Pa

Gas bulk modulus K1 1.45 · 105 Pa

Bulk modulus of water K2 2.25 · 109 Pa

Solid bulk modulus Ks 3.5 · 1010GPa

Consolidation bulk modulus Kb 4.5 · 106 Pa

Density of water ρw 997 kg/m3

Coefficient viscosity of gas η1 18 · 10−6 Pa·s

Coefficient viscosity of water η2 0.001 Pa·s

Acceleration of gravity g 9.8m/s2

Pore connectivity parameter η 1.165

Figure 2 shows the influence of the excitation frequency on deformation under different initial
saturations. Figures 2a,b,c and 2d are change curves of settlement under different excitation
frequencies when the initial saturation Sw is 0.65, 0.75, 0.85 and 1,00, respectively. In addition,
dimensionless depth, dimensionless pore water pressure and dimensionless time are defined as
z/h and T = (cv/h

2)t. Firstly, the settlement curves under different saturations are discussed
separately, and it is found that when the excitation frequency is 0Hz the settlements show
a steady development, which is shown as a consolidation curve under a constant load. When
the excitation frequencies are 0.1Hz and 10Hz, the settlement curves show obvious dynamic
load characteristics, and with an increases of the excitation frequency, the transient response
frequency of the settlement also accelerates.
By comparing the calculation results of the initial saturation Sw of 0.65, 0.75 and 0.85 in the

unsaturated state with the calculation results in the saturated state (Sw = 1.00), it is found that
when the excitation frequency ω = 0Hz, the time for saturated soil clay to reach consolidation
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Fig. 2. Influence curves of the frequency on deformation under different saturations: (a) Sw = 0.65,
(b) Sw = 0.75, (c) Sw = 0.85, (d) Sw = 1.00

stability is significantly longer than that for unsaturated soil clay. When the excitation frequency
ω is 0.1Hz and 10Hz, the amount of sedimentation at a certain moment decreases with an
increase of the initial saturation. In addition, the transient response lasts longer in saturated
clay, while the initial saturation is higher, the transient response will disappear more quickly in
unsaturated clay. All in all, the value of settlement under the constant load (ω = 0) is always
greater than that under the cyclic load (ω > 0). However, for the settlement under the dynamic
load it is difficult to maintain stability during the load-bearing period, and the effect of saturation
on consolidation deformation is also significantly far from the load frequency.

Figure 3 shows the change curve of pore water pressure Pw/P
∗ along the soil depth z/h

when the dimensionless time T is 10−5, 10−3 and 10−1, respectively. Figures 3a,b,c and 3d
show the distribution curve when the initial saturation is 0.65, 0.75, 0.85 and 1.00, respectively.
In addition, the dimensionless frequency is Ω = ωh2/cv, and the dimensionless frequency is
calculated Ω = 107 according to specific conditions.

It can be observed from Fig. 3 that under the unsaturated condition, the pore water pressure
in the area near the top and bottom of the soil layer has different degrees of oscillation, but this
situation does not appear in the saturated state. The reason for this phenomenon is that the
frequency of the applied dynamic load is different for different saturation, which causes a change
of pore water pressure at the boundary. At the dimensionless frequency Ω = 107, when the
saturation Sw is 0.65, 0.75 and 0.85, the corresponding excitation frequencies ω are 0.013 Hz,
0.042Hz and 0.114Hz, respectively. When the soil is saturated, the corresponding excitation
frequency ω is 857Hz. Therefore, given a dimensionless frequency due to the difference in soil
saturation makes the excitation frequency vary greatly. This phenomenon strongly depends on
the size of the excitation frequency.
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Fig. 3. Distribution law of pore water pressure and depth under complex conditions: (a) Sw = 0.65,
(b) Sw = 0.75, (c) Sw = 0.85, (d) Sw = 1.00

5. Conclusion

Based on the theory of porous elastic media, an effective stress formula of unsaturated soil ex-
pressed by suction stress is adopted, and a analytical solution of one-dimensional consolidation
of unsaturated soil under dynamic load is obtained by the Laplace transformation. In addition,
specific numerical analysis and discussion of one-dimensional consolidation behavior of unsatu-
rated clay under specific boundary conditions of a simple harmonic load are carried out. It is
clear that the excitation frequency of the simple harmonic load and the initial saturation of the
soil affects consolidation settlement. The results show that the settlement of soil under the con-
stant load is always greater than the settlement under the dynamic load. For the dynamic load,
the settlement at a certain moment decreases with an increase of saturation, and the transient
response under the dynamic load is also closely related to the load frequency and saturation.
Moreover, pore water pressure exhibits an obvious oscillation phenomenon in the area near the
drainage boundary and an oscillatory trend in the unsaturated soil under the dynamic load.
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Appendix A

The Fourier coefficient of a simple harmonic load Eq. (4.1) is

Bm(t) =
P ∗ω[cos(mπ)− 1]

mπ
sin(ωt) = Ym sin(ωt) (A.1)

Combine Eq. (3.15) to get

Pan(t) = (D1 +G1)e
−C1t + (D2 +G2)e

−C2t +G5 cos(ωt) +G6 sin(ωt)

Pwn(t) = (D3 +G3)e
−C1t + (D4 +G4)e

−C2t +G7 cos(ωt) +G8 sin(ωt)
(A.2)

The coefficients in Eqs. (A.2) are

C1 =
λ2n
2

(

q1b2 + q4b1
∆

+

√

1

∆
+ (q1b2 + q4b1)2 −

4b1b2
∆

)

C2 =
λ2n
2

(

q1b2 + q4b1
∆

−

√

1

∆
+ (q1b2 + q4b1)2 −

4b1b2
∆

)

D1 =
1

C1 − C2

[

Pan(0)
(

C1 −
q1b2λ

2
n

∆

)

−
q2b2λ

2
n

∆
Pwn(0)

]

D2 =
1

C1 − C2

[

Pan(0)
(q1b2λ

2
n

∆
− C2

)

+
q2b2λ

2
n

∆
Pwn(0)

]

D3 =
1

C1 − C2

[

Pwn(0)
(

C1 −
q4b1λ

2
n

∆

)

−
q3b1λ

2
n

∆
Pan(0)

]

D4 =
1

C1 − C2

[

Pwn(0)
(q4b1λ

2
n

∆
−C2

)

+
q3b1λ

2
n

∆
Pan(0)

]

G1 =
ωM2 − C1M1

(C2 −C1)(C21 + ω
2)

G2 =
C2M1 − ωM2

(C2 − C1)(C21 + ω
2)

G3 =
ωM4 − C1M3

(C2 −C1)(C21 + ω
2)

G4 =
C2M3 − ωM4

(C2 − C1)(C21 + ω
2)

G5 =
M1(C1C2 − ω

2)− ωM2(C1 + C2)

(C21 + ω
2)(C22 + ω

2)
G6 =

M1ω(C1 + C2) +M2(C1C2 − ω
2)

(C21 + ω
2)(C22 + ω

2)

G7 =
M3(C1C2 − ω

2)− ωM4(C1 + C2)

(C21 + ω
2)(C22 + ω

2)
G8 =

M3ω(C1 + C2) +M4(C1C2 − ω
2)

(C21 + ω
2)(C22 + ω

2)

where

M1 =
(q4Yan − q2Ywn)ω

∆
M2 =

b2λ
2
nYan
∆

M3 =
(q1Ywn − q3Yan)ω

∆

Appendix B

In the model of unsaturated soil, the relationship among physical, mechanical parameters and
the saturation is as follows.
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Coefficient of linear elasticity (Lo et al., 2005)

a11 =
Ks
N3
{(1− ϕ)N1[K1K2 +K1N2Sa +K2N2(1− Sa)]

+KbKsϕ[K1(1− Sa) +K2S1 +N2]}

a12 = a21 =
N1KsK1Sa(K2 +N2)

N3
a13 = a31 =

N1KsϕK2(1− Sa)(K1 +N2)

N3

a22 =
K1S

2
aϕ

N3

[

K2sϕ
(

K2 +
N2
Sa

)

+
K2N1N2
Sa

(1− Sa)
]

a23 = a32 = −
K1K2ϕSa(1− Sa)(N1N2 − ϕKs)

N3

a33 =
K2(1− Sa)ϕ

N3

[

K2sϕ
(

K1 +
N2
1− Sa

)

+
K1N1N2Sa
1− Sa

]

where Kb is the bulk modulus of the soil skeleton; K1, K2 and Ks respectively represent the
bulk modulus of air, water and solid soil particles. Among them, the parameters N1, N2 and N3
are defined as

N1 = Ks(1− ϕ)−Kb N2 =
dpc
dSa
Sa(1− Sa)

N3 ≡ N1[K1N2Sa +K1K2 +K2N2(1− Sa)] +K
2
s [K1(1− Sa) +N2 +K2Sa]

(B.1)

where pc is the suction matrix. In the V-G model (Genuchten, 1980)

Se = [1 + (ζhc)
n]−m (B.2)

where n, m and ζ are fitting parameters, m = 1− (1/n).
Combining Eq. (B.2) the expression for N2 can be obtained

N2 =
ρwg

mnζ

SaSw
Ss − Sr

[( 1− Sr
Ss − Sr

−
Sa
Ss − Sr

)−1/m
−1
](1/n)−1( 1− Sr

Ss − Sr
−
Sa
Ss − Sr

)−1−(1/m)
(B.3)

The relative permeability of pore gas and water (Wang et al., 2017) is

kra = (1− Se)
(

1− m

√

Se
)2m

kra = S
η
e

[

1−
(

1− m

√

Se
)m
]2

(B.4)

where η represents a parameter related to pore connectivity.
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